上海自动化仪表公司营销中心

免费会员

收藏

湿度的名词解释和湿度传感器选择

时间:2024-02-22      阅读:234

湿度的名词解释
湿度
在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,%rh表示。总言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。
湿度测量的历史
湿度和温度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。湿度计测的历史可以追溯到中国的天秤型(公元前179年)为zui早的湿度计测。(温度计测可追溯到记载的希腊时代的温度计。)
湿度(Absolute humidity)
单位体积(1m3)的气体中含有水蒸气的质量(g)。
表示∶D=g/m3
但是,即使水蒸气量相同,由于温度和压力的变化气体体积也要发生变化,即湿度D发生变化。D为容积基准。
相对湿度(Relative humidity)
气体中的水蒸气压(e)与其气体的饱和水蒸气压(es)的比/用百分比表示。
表示∶rh=e/es×100%
但是,温度和压力的变化导致饱和水蒸气压的变化,rh也将随之而变化。
饱和水蒸气压(Saturation Vapor Pressure)
气体中所含水蒸气的量是有限度的,达到限度的状态即可称之为饱和,此时的水蒸气压即称为饱和水蒸气压。此物理量亦随着温度,压力的变化而变化,并且,0℃以下即使同一湿度,与水共存的饱和水蒸气压(esw)和与冰共存的饱和水蒸气压(esi)的值不同,通常所采用的是与水共存的饱和水蒸气压(esw)。各温度对应的饱和水蒸气压表JIS-Z-8806在卷末记载。
露点(Dew Point)
温度较高的气体其所含水蒸气也较多,将此气冷却后,其所含水蒸气的量即使不发生变化,相对湿度增加,当达到一定温度时相对rh达到100%饱和,此时,继续进行冷却的话,其中一部分的水蒸气将凝聚成露。此时的温度即为露点温度(Dew Point Temperature)。露点在0℃以下结冰时即为霜点(Frost Point)。
不快指数"THI "(temperature humidity index)
不快指数这一术语,流行于表示居住环境,始用于1959年美国*。表示为:THI=(乾球温度td+湿球温度tw)×0.72+40.6,此数据70~75为半数不快,80以上基本上为全员不快,zui近,市场上有不快指数计在得以销售。
实效温度(Effective Temperature)
不快指数是人体可感知的指数的简易表示方式,随着zui近空气调和技术的发展,温度,湿度以外,又导入了风速等人间可感知的项目,从而创造了这个术语。与不快指数的差异不大,其变化较为接近。
等价温度(Equivalent-Warmth)
包含实效温度的要素(温度,湿度,气流)以及辐射等4要素的术语。
混合比"X"(humidity mixing ratio)
对于1kg水蒸气以下的空气(干燥空气),包含Xkg比例的水蒸气,其质量的比例X(kg/kg)为混合比,即使温度压力和体积发生变化,只要水蒸气的量不变,其混合比不变。因此,为了便于计算,在工业上将混合比称为湿度来使用。X为重量标准。
比湿"S"(Specific humidity)
即湿气(1kg)中所含的水蒸气(kg)。kg/kg来表示。
比较湿度"φ"(percentage humidity)
即1kg干气中所含水蒸气量(湿气的X)和同样温度的1kg干气所含饱和水蒸气量(饱和空气的湿度Xs)的比值的100倍。
φ=X/Xs×100%或称为饱和度(Saturation degree)即φ=0为干燥空气,φ=100为饱和空气。
摩尔比(molar humidity)"λ"
即水蒸气压和干气的压力比,即两者的摩尔数的比。
饱差(saturation deficit)
即es-e或Ds-D。在论述水的蒸发,干燥时用。
标准温湿度状态(JIS-8703)
标准湿度状态 1级 :相对湿度 65±2%rh
标准湿度状态 2级 :相对湿度 65±5%rh
标准湿度状态 3级 :相对湿度 65±20%rh
通常3级湿度状态为常湿。
标准温湿度状态 1类 :温度20±1℃ 相对湿度 65±2%rh
标准温湿度状态 2类 :温度20±2℃ 相对湿度 65±2%rh
标准温湿度状态 3类 :温度20±2℃ 相对湿度 65±5%rh
常温常湿:温度 20±15℃ 相对湿度 65±20%rh
湿(干)球温度(Wet-bulb temperature)"tw"
与外部隔热的系统内气体与液体接触,气体传导给液体一定的热量,其受热液体部分蒸发,气体的温度,湿度以及液温均无变化时的液温(tw℃)为其时的气体状态的湿球温度。即其时的气体温度(t℃)为干球温度(化学工学词典)
断热饱和温度(Adiabatic Saturation temperature)"ts"
空气在断热的状态下与水接触,称为与水温相同的饱和空气。此时的温度为断热饱和温度。
※湿球温度计的湿球感热部的表面的水分进行蒸发夺取潜热,与周围的空气进行热5m/sec以上时即可与断热饱和温度相同。
水分活性(water activity)"Aw"
食品中所含的水分,与自由水区别开来,以结晶水的形态自由吸放。以前计算食品水分含水量的方式是将食品进行干燥比较其重量,zui近采用热力学的方法使用自由水和自由度来表示水分活性的观点是比较合理方法,其值为Aw。
显热"kcal/kg’"
随着物体温度的升降,干燥空气1kg所出入的热量/温度相当于○0.24T显热,0.24即为干燥空气的重量比热(kcal/kg℃)。
潜热"kcal/kg’"
物体的蒸发,凝聚相互变化时,即使出入的热量/温度的升降发生变化,其出入的热量不变。温度T的水蒸气1kg的潜热(597.3+0.44T)。597.3是蒸气的气化潜热。 热函
即物体的保有热量的总量。
热水分比"μ"
不饱和空气从其他物体(例如其他空气,水,水蒸气等)上得到热和水分时,其空气的热函变化量⊿i和湿度的变化量⊿X的比
μ=⊿i/⊿X
雾气
饱和空气中混有水滴的状态。
含雪空气
饱和空气中混有雪和冰的状态。
比重量"γ"
标准状态(温度0℃、压力760mmHg、重力加速度g=980、665cm/S2)的比重量γ为1.293kg/Nm3。空气中水分的重量约为1~2%。当然,随着湿度压力而变化,空调方面较多以湿气的比1.2kg/m3来计算。
比容积
干燥空气1kg所含湿气的容积。湿比重量的逆数。由此,1/1.2=0.833m3/kg〔DA〕,在此,kg〔DA〕表示的是干燥空气1kg。
比热"Cp"
是指湿气温度变化1℃时热量的变化。
Cp=0.240+0.44χ
此时的Cp:湿气的定压比热〔kcal/kg(DA)?℃〕
χ :湿气的湿度〔kg/kg(DA)〕
显热比(Sensible heat factor)"SHF"
空气的温度及湿度变化时,针对全热量(热函)变化的显热量比率,即:SHF=(Cp*⊿t)/⊿i
此时Cp:定压比热
⊿i:热函变化量
⊿t:温度变化量
实效湿度(Effective humidity)"E"
冬季连续干燥的时间较长,为防止火灾的发生以及确认木材的干燥度所使用。
E=(1-0.7)H0+0.7H1+(0.7)(0.7)H2+??????
此时的H0:当日的相对湿度
H1:前日的相对湿度
H2:前前日的相对湿度力。
1.选择测量范围
和测量重量、温度一样,选择湿度传感器首先要确定测量范围。除了气象、科研部门外,搞温、湿度测控的一般不需要全湿程(0-100%RH)测量。在当今的信息时代,传感器技术与计算机技术、自动控制拄术紧密结合着。测量的目的在于控制,测量范围与控制范围合称使用范围。当然,对不需要搞测控系统的应用者来说,直接选择通用型湿度仪就可以了。下面列举一些应用领域对湿度传感器使用温度、湿度的不同要求,供使用者参考。用户根据需要向传感器生产厂提出测量范围,生产厂优先保证用户在使用范围内传感器的性能稳定一致,求得合理的性能价格比,对双方来讲是一件相得益彰的事情。
2、选择测量精度
和测量范围一样,测量精度同是传感器zui重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。例如进口的1只廉价的湿度传感器只有几美元,而1只供标定用的全湿程湿度传感器要几百美元,相差近百倍。所以使用者一定要量体裁衣,不宜盲目追求“高、精、尖”。
生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。*,相对湿度是温度的函数,温度严重地影响着空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。
多数情况下,如果没有的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。对于要求控制恒温、恒湿的局部空间,或者需要随时跟踪记录湿度变化的场合,再选用±3%RH
以上精度的湿度传感器。与此相对应的温度传感器.其测温精度须足±0.3℃以上,起码是±0.5℃的。而精度高于±2%RH的要求恐怕连校准传感器的标准湿度发生器也难以做到,更何况传感器自身了。国家标准物质研究中心湿度室的文章认为:“相对湿度测量仪表,即使在20—25℃下,要达到2%RH的准确度仍是很困难的。”
3、考虑时漂和温漂
几乎所有的传感器都存在时漂和温漂。由于湿度传感器必须和大气中的水汽相接触,所以不能密封。这就决定了它的稳定性和寿命是有限的。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期负责重新标定。请使用者在选择传感器时考虑好日后重新标定的渠道,不要贪图便宜或迷信洋货而忽略了售后服务问属。
选择湿度传感器要考虑应用场合的温度变化范围,看所选传感器在温度下能否正常工作,温漂是否超出设计指标。要提醒使用者注意的是:电容式湿度传感器的温度系数α是个变量,它随使用温度、湿度范围而异。这是因为水和高分子聚合物的介电系数随温度的改变是不同步的,而温度系数α又主要取决于水和感湿材料的介电系数,所以电容式湿敏元件的温度系数并非常数。电容式湿度传感器在常温、中湿段的温度系数zui小,5-25℃时,中低湿段的温漂可忽略不计。但在高温高湿区或负温高湿区使用时,就一定要考虑温漂的影响,进行必要的补偿或订正。
随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。
下列此文供大家参考。
一、湿度传感器的分类及感湿特点
湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。
国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比*的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点:
1、精度和长期稳定性
湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。
2、湿度传感器的温度系数
湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般在0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。
3、湿度传感器的供电
金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。
4、互换性
目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。
5、湿度校正
校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。
二、对湿度传感器性能作初步判断的几种方法
在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。
1、一致性判定,同一类型,同一厂家的湿度传感器产品一次购买两支以上,越多越说明问题,放在一起通电比较检测输出值,在相对稳定的条件下,观察测试的一致性。若进一步检测,可在24h内间隔一段时间记录,一天内一般都有高、中、低3种湿度和温度情况,可以较全面地观察产品的一致性和稳定性,包括温度补偿特性。
2、用嘴呵气或利用其它加湿手段对传感器加湿,观察其灵敏度、重复性、升湿脱湿性能,以及分辨率,产品的zui高量程等。
3、对产品作开盒和关盒两种情况的测试。比较是否一致,观察其热效应情况。
4、对产品在高温状态和低温状态(根据说明书标准)进行测试,并恢复到正常状态下检测和实验前的记录作比较,考查产品的温度适应性,并观察产品的一致性情况。
产品的性能zui终要依据质检部门正规完备的检测手段。利用饱和盐溶液作标定,也可使用产品作比对检测,产品还应进行长期使用过程中的长期标定才能较全面地判断湿度传感器的质量。
三、对市场上湿度传感器产品的几点分析
国内市场上出现了不少国内外湿度传感器产品,电容式湿敏元件较为多见,感湿材料种类主要为高分子聚合物,氯化锂和金属氧化物。
电容式湿敏元件的优点在于响应速度快、体积小、线性度好、较稳定,国外有些产品还具备高温工作性能。但是达到上述性能的产品多为国外,价格都较昂贵。市场上出售的一些电容式湿敏元件低价产品,往往达不到上述水平,线性度、一致性和重复性都不甚理想,30%RH以下,80%RH以上感湿段变形严重。有些产品采用单片机补偿修正,使湿度出现"阶跃"性的跳跃,使精度降低,出现一致性差、线性差的缺点。无论次或低档次的电容式湿敏元件,长期稳定性都不理想,多数长期使用漂移严重,湿敏电容容值变化为pF级,1%RH的变化不足0.5pF,容值的漂移改变往往引起几十RH%的误差,大多数电容式湿敏元件不具备40℃以上温度下工作的性能,往往失效和损坏。
电容式湿敏元件抗腐蚀能力也较欠缺,往往对环境的洁净度要求较高,有的产品还存在光照失效、静电失效等现象,金属氧化物为陶瓷湿敏电阻,具有湿敏电容相同的优点,但尘埃环境下,陶瓷细孔被封堵元件就会失效,往往采用通电除尘的方法来处理,但效果不够理想,且在易燃易爆环境下不能使用,氧化铝感湿材料无法克服其表面结构"天然老化"的弱点,阻抗不稳定,金属氧物陶瓷湿敏电阻也同样存在长期稳定性差的弱点。
氯化锂湿敏电阻,具有zui突出的优点是长期稳定性*,因此通过严格的工艺制作,制成的仪表和传感器产品可以达到较高的精度,稳定性强是产品具备良好的线性度、精密度及一致性,是长期使用寿命的可靠保证。氯化锂湿敏元件的长期稳定性其它感湿材料尚无法取代。
上一篇: PSVR 100发电机励磁调节器在半山电厂的应用 下一篇: 电能计量装置综合误差
提示

请选择您要拨打的电话: