$item.Name
$item.Name
$item.Name
$item.Name
$item.Name

首页>仪器仪表>常用仪表>电工仪器仪表

4105-02A 重庆供应美国PCB传感器4105-02A当天发货

型号
4105-02A
参数
安全等级:1 标准附件:9 测量功能:其他 电池类型:4 电容量程:68 二极管测试:是 交流电流流程:5 交流电压量程:3 净重:0.25 款式:台式万用表 类型:光万用表 认证及标准:3 是否进口:是 数据保持:是 通断蜂鸣测试:是 外形尺寸:5 型号:4105-02A 用途:专业用 直流电流流程:45 直流电压量程:1 自动关机:是 自动量程:是 最大显示:8
上海持承自动化设备有限公司 0免费会员 经销商

该企业相似产品

测量仪,传感器

目前我们经销的优势产品主要如下: 三菱、尼利可、伦茨、 尤尼帕斯、科比、西威 、威纶 派克 、斯德博 、三桥、三碁  泽村 共和  、信之诺  、钛玛科   、科帝   BORE    、莱茵  、伟肯、WESTCOPLEY   PKE   A-B OEMAX SCAN KEYENCE DATASENSOR CONCH Festo CAHO  BALDOR TECSIS   E+H   、美国lee   SKTC  Labom MINARIK  SSS  Cutler-hammer  EVCO ABB  LG SMC横河  企宏   、山武 、松下、 西门子、 欧姆龙 、施耐德 、山洋 富士、  泛达 、普传 普洛菲斯、 安川  、台达 费斯托  、和泉 穆勒、  西门康 、内密控、 东芝 、光洋 、泰映、和泉、 菲尼克斯 、海泰克 、山宇、东方马达、魏德米勒、倍加福、罗斯蒙特、图尔克、横河、博世力士乐、爱默生、基恩斯、神视、霍尼韦尔、英国C.T、奥托尼克斯、诺冠、贺德克、贺斯曼、中国台湾研华、明纬、丹佛斯、亚德客、三恳等品牌,并能够提供相关技术支持与售后服务。

详细信息

重庆供应美国PCB传感器4105-02A当天发货

重庆供应美国PCB传感器4105-02A当天发货

热电式传感器

热电式传感器是将温度变化转换为电量变化的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。

温度是表征物体冷热程度的物理量。它反映物体内部各分子运动平均动能的大小。温度可以利用物体的某些物理性质(电阻、电势、等)随着温度变化的特征进行测量。测量方法按作用原理分接触式和非接触式。

中文名 热电式传感器 定    义 将温度变化转换为电量变化的装置 热电特点 测量精度高,广 热电优势 信号输出较大

目录

1 定义

2 特点

3 工作原理

4 工作原理

5 基本定律

6 常用热电偶

7 温度补偿

定义编辑

例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。

特点编辑

1、热电偶特点:

测量精度高:因热电偶直接与被测对象接触,不受中间介质的影响。

测量范围广:常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶低可测到-269℃(如金铁镍铬),ZUIGAO可达+2800℃(如钨-铼)。

构造简单,使用方便:热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

2、热电阻特点:

信号输出较大,易于测量;

热电阻要借助外加电源,而热电偶可自身产生电势;

热电阻的测温反应速度慢;

同类材料制成的热电阻不如热电偶测温上限高。

工作原理编辑

热电偶是利用热电效应制成的温度传感器。所谓热电效应,就是两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。由热电效应产生的电动势包括接触电动势和温差电动势。接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。其数值取决于两种不同导体的材料特性和接触点的温度。温差电动势是同一导体的两端因其温度不同而产生的一种电动势。其产生的机理为:高温端的电子能量要比低温端的电子能量大,从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,在导体两端便形成温差电动势。

热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。热电阻广泛用来测量-200~850℃范围内的温度,少数情况下,低温可测量至1K,高温达1000℃。标准铂电阻温度计的精确度高,作为复现温标的标准仪器。

工作原理编辑

热电效应

如右图所示,两种不同性质的导体或半导体材料A、B串接成一个闭合回路,如果两接合点处的温度不同,即T≠T0,则在两导体间产生热电势,也称热电动势,常用EAB(T,T0)表示。同时在回路中有一定大小的电流,这种现象称为热电效应。

几个概念:

热电极:闭合回路中的导体或半导体A、B,称为热电极;

热电偶:闭合回路中的导体或半导体A、B的组合,称为热电耦;

工作端:两个结点中温度高的一端,称为工作端;

参比端:两个结点中温度低的一端,称为参比端;

热电动势:两导体的接触电势 + 单一导体的温差电势;

⑴接触电势:

产生接触电势的主要原因:

① 不同材料具有不同的自由电子密度;

② 两种不同材料的导体接触时,接触面会发生电子扩散;

当扩散达到动态平衡时,在接触区形成一个稳定的电位,表示为:如图所示:

⑵温差电势:

① 导体中自由电子在高温端具有较大的动能;

② 电子从高温端向低温端扩散,因而高温端带正电,低温端带负电,形成静电场,并阻碍电子扩散;

当扩散达到动态平衡时,两端产生一个相应的电位差,称为温差电势,表示为:如图所示:

⑶接触电势与温差电势的性质:

用公式可以证明:

⑷回路总电势:

用小写e表示接触或温差电势,用大写E表示回路总电势。如图所示:

几点讨论:如图所示 [1]  :

基本定律编辑

①中间导体定律

在热电偶回路中接如第三种材料的导体(传感器引出)时,只要其两端温度相等,总回路电势不变。如下图所示:

用途:接入仪表测量线。

②参考电极定律(标准电极定律)

设结点温度为T、T0,则用导体A、B组成的热电偶产生的热电势等于导体A、C组成的热电偶和导体C、B组成的热电偶产生的热电势的代数和。如下图所示,有:

参考电极定律应用:由于铂丝的理化性能稳定,如果能实验测得各种材料热电极对铂丝的热电特性,就不难推得任意材料间的热电特性。

③中间温度定律

结点温度为(T、T0)时的热电势等于该热电耦在结点温度为(T、Tn)和(Tn、T0)时相应热电势的代数和。即如图所示:

结论:

中间温度定律为制定热电偶得分度表奠定了理论基础。从分度表查出参考端为零度时得热电势,即可求得参考端温度不为零时得热电势。 [1] 

例:用镍铬-镍硅热电偶测量热处理炉炉温。冷端温度T0=30℃,此时测得热电势E(T,T0)=39.17mV,则实际炉温是多少?

解:由T0=30℃查分度表得:E(30,0)= 1.2mV,则:

E(T,0)= E(T,30)+ E(30,0)= 39.17mV+ 1.2mV= 40.37mV

再由40.37mV查分度表,得实际炉温T=977℃

常用热电偶编辑

1.铂铑-铂热电偶:

S型热电偶。

特点:精度高,标准热电偶。但热电势小。(<1300℃)

2.镍铬-镍硅热电偶:

K型热电偶。

特点:线性好,价格低,较常用。但精度偏低。(-50~1300℃)

3.镍铬-考铜热电偶:

E型热电偶。

特点:灵敏度高,价格低,常温测量,但非均匀线性。(-50~500℃)

4.铂铑30-铂铑6热电偶:

B型热电偶。

特点:精度高,冷端热电势小,40℃下可不修正。但价格高,输出小。

5.铜-康铜热电偶:

T型热电偶。

特点:低温稳定性好,但复制性差。

温度补偿编辑

1.补偿原因:

①从前述分析可知,只有当热电偶冷端温度保持不变时,热电势才是被测温度得单值函数;

②实际应用中,由于冷端暴露在空气中,往往和工作端又比较接近,故冷端温度易波动;

2.补偿方法:

⑴补偿导线法:

目的:

使冷端远离工作端,和测量仪表一起放到恒温或温度波动小的地方。

手段:

①延长热电偶的长度:安装不便,费用高;

②采用补偿导线,要求:

a.在0~100℃范围内和所连接的热电偶有相同的热电性能;

b.材料是廉价金属

注意:

①冷端需有自动补偿装置,补偿导线才有意义,且连接处<100℃;

②补偿导线不能选错,如:

铂铑-铂热电偶:补偿线用铜-镍铜;

镍铬-镍硅热电偶:补偿线用铜-康铜;

⑵冷端温度计算校正法:

①热电势修正法:

冷端温度不为零时,运用热电偶分度表修正,修正方法如前例所述。

②温度修正法:

设:T’为仪表指示温度;T0为冷端温度;

则:被测实际温度T为:T=T’+k T0

式中:k为热电偶修正系数,和热电偶的种类和测温范围相关,有表可查。

例:在前例中

解:指示温度:T’=946℃;(当E(T,T0)=39.17mV时,查分度表可得)

冷端温度: T0 =30℃;

查表底:k=1.00

则实际炉温:T=T’+k T0 = 946℃+ 1.00× 30℃=976℃

和热电势修正法所得炉温相差1℃,此方法在工程上应用广泛。

⑶冰浴法:

冷端用冰水混合物保持在0℃。

特点:

可避免校正的麻烦,但使用不便,多在实验室使用。

(4)补偿电路法:见图所示 [1] 

旋转编码器原理特点

===

上海持承

  旋转编码器是集光机电技术于一体的速度位移传感器。当旋转编码器轴带动光栅盘旋转时,经发光元件发出的光被光栅盘狭缝切割成断续光线,并被接收元件接收产生初始信号。该信号经后继电路处理后,输出脉冲或代码信号。其特点是体积小,重量轻,品种多,功能全,频响高,分辨能力高,力矩小,耗能低,性能稳定,可靠使用寿命长等特点。

  1

、增量式编码器

  增量式编码器轴旋转时,有相应的相位输出。其旋转方向的判别和脉冲数量的增减,需借助后部的判向电路和计数器来实现。其计数起点可任意设定,并可实现多圈的无限累加和测量。还可以把每转发出一个脉冲的

Z

信号,作为参考机械零位。当脉冲已固定,而需要提高分辨率时,可利用带

90

度相位差

A

B

的两路信号,对原脉冲数进行倍频。

  2

、值编码器

  值编码器轴旋转器时,有与位置一一对应的代码(二进制,

BCD

码等)输出,从代码大小的变更即可判别正反方向和位移所处的位置,而无需判向电路。它有一个零位代码,当停电或关机后再开机重新测量时,仍可准确地读出停电或关机位置地代码,并准确地找到零位代码。一般情况下值编码器的测量范围为

0

360

度,但特殊型号也可实现多圈测量。

光纤传感器

光纤传感器是一种将被测对象的状态转变为可测的光信号的传感器。光纤传感器的工作原理是将光源入射的光束经由光纤送入调制器,在调制器内与外界被测参数的相互作用, 使光的光学性质如光的强度、波长、频率、相位、偏振态等发生变化,成为被调制的光信号,再经过光纤送入光电器件、经解调器后获得被测参数。整个过程中,光束经由光纤导入,通过调制器后再射出,其中光纤的作用首先是传输光束,其次是起到光调制器的作用。 [1] 

中文名 光纤传感器 外文名 fibre optic sensor 直    径 125 μm 压力范围 ±300 mmHg 决    心 <0.4 mmHg 零热效应 0.4 mmHg / °C 运行温度 10 – 50°C 特    点 安装简单,电路连接更简单容易

目录

1 发展方向

2 原理

3 性能

4 特点

5 分类

? 功能型

? 非功能光纤型

? 布拉格光栅

? 传光型光纤

6 应用

7 案例

? 土木工程领域

? 检测技术

? 石油工业

? 温度测量

? 杨氏模量

8 环境分析

9 行业分析

10 组成结构

11 发展前景

发展方向编辑

传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:具有抗电磁和原子辐射干扰的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的SHENGLI界限,接收人的感官所感受不到的外界信息。

特点

1、因反射体中使用了棱镜,所以与通用的反射型光控传感器器相比,其检测性能更高、更可靠

2 、与分离式光控传感器相比,电路连接更简单容易。

3、 子母扣嵌入式的设计,安装更为简单

用途

1、用于DIANHUA、网络宽带等数字型号传输。

2、用于自动售货机、金融终端有关的设备、点钞机的ZHIBI、卡、硬币、存折等的通过情况

3、用于自动化设备上产品定位、计数、识别。 [2] 

原理编辑

光纤传感器的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏振态等)发生变化,称为被调制的信号光,再利用被测量对光的传输特性施加的影响,完成测量。

光纤传感器的测量原理有两种。

(1)物性型光纤传感器原理,物性型光纤传感器是利用光纤对环境变化的敏感性,将输入物理量变换为调制的光信号。其工作原理基于光纤的光调制效应,即光纤在外界环境因素,如温度、压力、电场、磁场等等改变时,其传光特性,如相位与光强,会发生变化的现象。

因此,如果能测出通过光纤的光相位、光强变化,就可以知道被测物理量的变化。这类传感器又被称为敏感元件型或功能型光纤传感器。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界参数(温度、压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压等。

(2)结构型光纤传感器原理,结构型光纤传感器是由光检测元件(敏感元件)与光纤传输回路及测量电路所组成的测量系统。其中光纤仅作为光的传播媒质,所以又称为传光型或非功能型光纤传感器。 [2] 

性能编辑

光纤具有很多优异的性能,例如:具有抗电磁和原子辐射干扰的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方,或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的SHENGLI界限,接收人的感官所感受不到的外界信息。 [2] 

特点编辑

一、灵敏度较高;

二、几何形状具有多方面的适应性,可以制成任意形状的光纤传感器;

三、可以制造传感各种不同物理信息(声、磁、温度、旋转等)的器件;

四、可以用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境;

五、而且具有与光纤遥测技术的内在相容性。

光纤传感器的优点是与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列*的优点。电绝缘性能好,抗电磁*力强,非侵入性,高灵敏度,容易实现对被测信号的远距离监控,耐腐蚀,防爆,光路有可挠曲性,便于与计算机联接。

传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的耳目作用,而且还能超越人的SHENGLI界限,接收人的感官所感受不到的外界信息。 [2] 

分类编辑

根据光受被测对象的调制形式可以分为:强度调制型、偏振态制型、相位制型、频率制型;

根据光是否发生干涉可分为:干涉型和非干涉型;

根据是否能够随距离的增加连续地监测被测量可分为:分布式和点分式;

根据光纤在传感器中的作用可以分为:一类是功能型(Functional Fiber,缩写为FF)传感器,又称为传感型传感器; 另一类是非功能型(Non Functional Fiber缩写为NFF),又称为传光型传感器。 [3] 

功能型

功能型传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。

光纤在其中不仅是导光媒质,而且也是敏感元件,光在光纤内受被测量调制,多采用多模光纤。

优点:结构紧凑、灵敏度高。

缺点:须用特殊光纤,成本高,

典型例子:光纤陀螺、光纤水听器等。 [3] 

非功能光纤型

非功能型光纤传感器是利用其它敏感元件感受被测量的变化, 光纤仅作为信息的传输介质,常采用单模光纤。

光纤在其中仅起导光作用,光照在光纤型敏感元件上受被测量调制。

优点:光纤即可用于电气隔离,有用于数据传输,且光纤传输的信号不受电磁干扰的影响。

实用化的大都是非功能型的光纤传感器。AnyWay的变频电压传感器、变频电流传感器、变频功率传感器(一种电压、电流组合式传感器)就属于非功能型的光纤传感器,在复杂电磁环境下的电量测量中,有其独到的优势。

光纤传感器是ZUI近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了*的能力。光纤传感器有70多种,大致上分成光纤自身传感器和利用光纤的传感器。

所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。

光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、DAODAN等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。 [3] 

布拉格光栅

光纤布拉格光栅传感器的工作原理

光纤布拉格光栅传感器的工作原理

光纤布拉格光栅传感器(FBS)是一种使用频率ZUIGAO,范围ZUI广的光纤传感器,这种传感器能根据环境温度以及/或者应变的变化来改变其反射的光波的波长。光纤布拉格光栅是通过全息干涉法或者相位掩膜法来将一小段光敏感的光纤暴露在一个光强周期分布的光波下面。这样光纤的光折射率就会根据其被照射的光波强度而=YONGJIU改变。这种方法造成的光折射率的周期性变化就叫做光纤布拉格光栅。

当一束广谱的光束被传播到光纤布拉格光栅的时候,光折射率被改变以后的每一小段光纤就只会反射一种特定波长的光波,这个波长称为布拉格波长,这种特性就使光纤布拉格光栅只反射一种特定波长的光波,而其它波长的光波都会被传播。

按光纤在光纤传感器中的作用可分为传感型和传光型两种类型。

传感型光纤传感器的光纤不仅起传递光作用,同时又是光电敏感元件。由于外界环境对光纤自身的影响,待测量的物理量通过光纤作用于传感器上,使光波导的属性(光强、相位、偏振态、波长等)被调制。传感器型光纤传感器又分为光强调制型、相位调制型、振态调制型和波长调制型等。 [3] 

传光型光纤

传光型光纤传感器是将经过被测对象所调制的光信号输入光纤后,通过在输出端进行光信号处理而进行测量的,这类传感器带有另外的感光元件对待测物理量敏感,光纤仅作为传光元件,必须附加能够对光纤所传递的光进行调制的敏感元件才能组成传感元件。光纤传感器根据其测量范围还可分为点式光纤传感器、积分式光纤传感器、分布式光纤传感器三种。其中,分布式光纤传感器被用来检测大型结构的应变分布,可以快速无损测量结构的位移、内部或表面应力等重要参数。用于土木工程中的光纤传感器类型主要有Math-Zender干涉型光纤传感器,Fabry-pero腔式光纤传感器,光纤布喇格光栅传感器等。

光纤传感器的轻巧性、耐用性和*稳定性,使其能够方便的应用于建筑钢结构和混凝土等各种建筑材料的内部应力、应变检测。实现的建筑结构的健康检测。

光纤传感器的另外一个大类是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比*类传感器稍低。

光纤在传感器家族中是*,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。

光纤传感器凭借着其大量的优点已经成为传感器家族的*,并且在各种不同的测量中发挥着自己独到的作用,成为传感器家族中*的一员。 [3] 

相关技术文章

同类产品推荐

相关分类导航

产品参数

安全等级 1
标准附件 9
测量功能 其他
电池类型 4
电容量程 68
二极管测试
交流电流流程 5
交流电压量程 3
净重 0.25
款式 台式万用表
类型 光万用表
认证及标准 3
是否进口
数据保持
通断蜂鸣测试
外形尺寸 5
型号 4105-02A
用途 专业用
直流电流流程 45
直流电压量程 1
自动关机
自动量程
最大显示 8

规格类型

企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话: